Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
1.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589444

RESUMO

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferons , Células Endoteliais/metabolismo , Meios de Cultivo Condicionados/farmacologia , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferon gama/farmacologia , Interferon gama/metabolismo , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
2.
Toxicol In Vitro ; 96: 105782, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244730

RESUMO

Estrogen-induced intrahepatic cholestasis (IHC) is a mild but potentially serious risk and urges for new therapeutic targets and effective treatment. Our previous study demonstrated that RORγt and CXCR3 signaling pathway of invariant natural killer T (iNKT) 17 cells play pathogenic roles in 17α-ethinylestradiol (EE)-induced IHC. Ursodeoxycholic acid (UDCA) and 18ß-glycyrrhetinic acid (GA) present a protective effect on IHC partially due to their immunomodulatory properties. Hence in present study, we aim to investigate the effectiveness of UDCA and 18ß-GA in vitro and verify the accessibility of the above targets. Biochemical index measurement indicated that UDCA and 18ß-GA presented efficacy to alleviate EE-induced cholestatic cytotoxicity. Both UDCA and 18ß-GA exhibited suppression on the CXCL9/10-CXCR3 axis, and significantly restrained the expression of RORγt in vitro. In conclusion, our observations provide new therapeutic targets of UDCA and 18ß-GA, and 18ß-GA as an alternative treatment for EE-induced cholestasis.


Assuntos
Colestase , Ácido Glicirretínico , Células T Matadoras Naturais , Receptores CXCR3 , Ácido Ursodesoxicólico , Colestase/induzido quimicamente , Colestase/tratamento farmacológico , Etinilestradiol/toxicidade , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/farmacologia , Ácido Glicirretínico/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Transdução de Sinais , Ácido Ursodesoxicólico/farmacologia , Ácido Ursodesoxicólico/uso terapêutico , Animais , Camundongos
3.
Cell Death Dis ; 14(12): 835, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104126

RESUMO

Glioblastoma (GBM) is a highly aggressive brain tumor associated with limited therapeutic options and a poor prognosis. CXCR3, a chemokine receptor, serves dual autocrine-paracrine functions in cancer. Despite gaps in our understanding of the functional role of the CXCR3 receptor in GBM, it has been shown to hold promise as a therapeutic target for the treatment of GBM. Existing clinical therapeutics and vaccines targeting CXCR3 ligand expression associated with the CXCR3 axes have also shown anti-tumorigenic effects in GBM. This review summarizes existing evidence on the oncogenic function of CXCR3 and its ligands CXCL9, CXCL10, and CXCL11, in GBM, and examines the controversies concerning the immunomodulatory functions of the CXCR3 receptor, including immune T cell recruitment, polarization, and positioning. The mechanisms underlying monotherpies and combination therapies targeting the CXCR3 pathways are discussed. A better understanding of the CXCR3 axes may lead to the development of strategies for overcoming the limitations of existing immunotherapies for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Quimiocina CXCL10 , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Quimiocina CXCL9 , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Linfócitos T/metabolismo , Ligantes
4.
Front Immunol ; 14: 1219279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790939

RESUMO

The transcription factor Fli-1, a member of the ETS family of transcription factors, is implicated in the pathogenesis of lupus disease. Reduced Fli-1 expression in lupus mice leads to decreased renal Cxcl10 mRNA levels and renal infiltrating CXCR3+ T cells that parallels reduced renal inflammatory cell infiltration and renal damage. Inflammatory chemokine CXCL10 is critical for attracting inflammatory cells expressing the chemokine receptor CXCR3. The CXCL10/CXCR3 axis plays a role in the pathogenesis of various inflammatory diseases including lupus. Our data here demonstrate that renal CXCL10 protein levels are significantly lower in Fli-1 heterozygous MRL/lpr mice compared to wild-type MRL/lpr mice. Knockdown of Fli-1 significantly reduced CXCL10 secretion in mouse and human endothelial cells, and human mesangial cells, upon LPS or TNFα stimulation. The Fli-1 inhibitor, Camptothecin, significantly reduced CXCL10 production in human monocyte cells upon interferon stimulation. Four putative Ets binding sites in the Cxcl10 promoter showed significant enrichment for FLI-1; however, FLI-1 did not directly drive transcription from the human or mouse promoters, suggesting FLI-1 may regulate CXCL10 expression indirectly. Our results also suggest that the DNA binding domain of FLI-1 is necessary for regulation of human hCXCR3 promotor activity in human T cells and interactions with co-activators. Together, these results support a role for FLI-1 in modulating the CXCL10-CXCR3 axis by directly or indirectly regulating the expression of both genes to impact lupus disease development. Signaling pathways or drugs that reduce FLI-1 expression may offer novel approaches to lupus treatment.


Assuntos
Células Endoteliais , Proteína Proto-Oncogênica c-fli-1 , Animais , Humanos , Camundongos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Células Endoteliais/metabolismo , Rim/patologia , Camundongos Endogâmicos MRL lpr , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
5.
Eur J Immunol ; 53(12): e2350574, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689974

RESUMO

Various regulatory CD8+ T-cell subsets have been proposed for immune tolerance and have been implicated in controlling autoimmune diseases. However, their phenotypic identities and suppression mechanisms are not yet understood. This study found that coculture of T-cell receptor (TCR)- or interferon (IFN)-ß-activated CD8+ T cells significantly suppressed the cytokine production of Th1 and Th17 cells. By experimenting with the experimental autoimmune uveitis (EAU), we found that adoptive transfer of TCR or IFN-ß-activated CD8+ T cells significantly lessened disease development in an IFN-γ-dependent manner with a decreased uveitogenic Th1 and Th17 response. Interestingly, after adoptive transfer into the EAU mice, the IFN-γ+ CD8+ T cells were recruited more efficiently into the secondary lymphoid organs during the disease-priming phase. This recruitment depends on the IFN-γ-inducible chemokine receptor CXCR3; knocking out CXCR3 abolishes the protective effect of CD8+ T cells in EAU. In conclusion, we identified the critical role of IFN-γ for CD8+ T cells to inhibit Th1 and Th17 responses and ameliorate EAU. CXCR3 is necessary to recruit IFN-γ+ CD8+ T cells to the secondary lymphoid organ for the regulation of autoreactive Th1 and Th17 cells.


Assuntos
Linfócitos T CD8-Positivos , Interferon gama , Retinite , Masculino , Feminino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária , Retinite/imunologia , Células Th1/imunologia , Células Th17/imunologia , Interferon gama/imunologia , Polaridade Celular/imunologia , Interleucina-10/imunologia , Interferon beta/farmacologia , Receptores CXCR3/genética , Receptores CXCR3/imunologia , Transporte Proteico/genética , Baço/imunologia
6.
Immunity ; 56(7): 1613-1630.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37392735

RESUMO

Infiltration of regulatory T (Treg) cells, an immunosuppressive population of CD4+ T cells, into solid cancers represents a barrier to cancer immunotherapy. Chemokine receptors are critical for Treg cell recruitment and cell-cell interactions in inflamed tissues, including cancer, and thus are an ideal therapeutic target. Here, we show in multiple cancer models that CXCR3+ Treg cells were increased in tumors compared with lymphoid tissues, exhibited an activated phenotype, and interacted preferentially with CXCL9-producing BATF3+ dendritic cells (DCs). Genetic ablation of CXCR3 in Treg cells disrupted DC1-Treg cell interactions and concomitantly increased DC-CD8+ T cell interactions. Mechanistically, CXCR3 ablation in Treg cells increased tumor antigen-specific cross-presentation by DC1s, increasing CD8+ T cell priming and reactivation in tumors. This ultimately impaired tumor progression, especially in combination with anti-PD-1 checkpoint blockade immunotherapy. Overall, CXCR3 is shown to be a critical chemokine receptor for Treg cell accumulation and immune suppression in tumors.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Imunoterapia , Células Dendríticas/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
7.
Curr Microbiol ; 80(6): 201, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140634

RESUMO

Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against ß-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.


Assuntos
Brucelose , Quimiocina CXCL10 , Humanos , Quimiocina CXCL10/genética , Leucócitos Mononucleares/metabolismo , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Quimiocina CXCL9/genética , Quimiocina CXCL11/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
8.
Cell Mol Life Sci ; 80(3): 78, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36862204

RESUMO

Chemokines are pivotal players in instigation and perpetuation of synovitis through leukocytes egress from the blood circulation into the inflamed articulation. Multitudinous literature addressing the involvement of the dual-function interferon (IFN)-inducible chemokines CXCL9, CXCL10 and CXCL11 in diseases characterized by chronic inflammatory arthritis emphasizes the need for detangling their etiopathological relevance. Through interaction with their mutual receptor CXC chemokine receptor 3 (CXCR3), the chemokines CXCL9, CXCL10 and CXCL11 exert their hallmark function of coordinating directional trafficking of CD4+ TH1 cells, CD8+ T cells, NK cells and NKT cells towards inflammatory niches. Among other (patho)physiological processes including infection, cancer, and angiostasis, IFN-inducible CXCR3 ligands have been implicated in autoinflammatory and autoimmune diseases. This review presents a comprehensive overview of the abundant presence of IFN-induced CXCR3 ligands in bodily fluids of patients with inflammatory arthritis, the outcomes of their selective depletion in rodent models, and the attempts at developing candidate drugs targeting the CXCR3 chemokine system. We further propose that the involvement of the CXCR3 binding chemokines in synovitis and joint remodeling encompasses more than solely the directional ingress of CXCR3-expressing leukocytes. The pleotropic actions of the IFN-inducible CXCR3 ligands in the synovial niche reiteratively illustrate the extensive complexity of the CXCR3 chemokine network, which is based on the intercommunion of IFN-inducible CXCR3 ligands with distinct CXCR3 isoforms, enzymes, cytokines, and infiltrated and resident cells present in the inflamed joints.


Assuntos
Artrite , Doenças Autoimunes , Humanos , Linfócitos T CD8-Positivos , Ligantes , Receptores CXCR3/genética , Interferons/farmacologia
9.
Cancer Sci ; 114(6): 2622-2633, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36898851

RESUMO

Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma associated with chronic inflammation (DLBCL-CI) develops in the setting of long-standing inflammation. This type of lymphoma may have specific expression profiles of chemokines involved in the pathogenesis of DLBCL-CI. EBV-positive pyothorax-associated lymphoma (PAL) is a prototype of DLBCL-CI and represents a valuable model for the study of this disease category. Using a panel of PAL cell lines, we found that PAL cells expressed and secreted C-X-C motif chemokine ligands 9 and 10 (CXCL9 and CXCL10), the ligands of CXCR3, in contrast to EBV-negative DLBCL cell lines, which did not. Culture supernatants from PAL cell lines attracted CXCR3-expressing CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells from human peripheral blood mononuclear cells. PAL cells injected into mice also attracted CXCR3-positive cytotoxic lymphocytes that expressed interferon-γ. The expression of CXCL9 and CXCL10 was detected in PAL tumor biopsy samples from patients, and CXCR3-positive lymphocytes were abundant in the tissue samples. Collectively, these findings suggest that CXCL9 and CXCL10 are produced by PAL cells and can elicit cytotoxic responses via CXCR3. This chemokine system is also likely to contribute to tissue necrosis, which is a signature histological feature of DLBCL-CI. Further studies are warranted to determine whether the CXCL9-CXCL10/CXCR3 axis exerts antitumor effects in DLBCL-CI.


Assuntos
Empiema Pleural , Infecções por Vírus Epstein-Barr , Linfoma Difuso de Grandes Células B , Camundongos , Animais , Humanos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Herpesvirus Humano 4/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Leucócitos Mononucleares/metabolismo , Ligantes , Inflamação , Células Matadoras Naturais/metabolismo , Quimiocina CXCL9 , Receptores CXCR3/genética
10.
Mol Cells ; 46(5): 281-297, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-36799104

RESUMO

CXCR3 regulates leukocyte trafficking, maturation, and various pathophysiological conditions. Alternative splicing generates three CXCR3 isoforms in humans. Previous studies investigated the roles of CXCR3 isoforms, and some biochemical data are not correlated with biological relevance analyses. RT-PCR analyses indicate that most cells express all three splicing variants, suggesting that they may mutually affect the chemokine binding and cellular responses of other splicing variants. Here, we performed an integrative analysis of the functional relations among CXCR3 splicing variants and their chemokine-dependent signaling using NanoBiT live cell protein interaction assays. The results indicated that the CXCR3 N-terminal region affected cell surface expression levels and ligand-dependent activation. CXCR3A was efficiently expressed in the plasma membrane and responded to I-TAC, IP-10, and MIG chemokines. By contrast, CXCR3B had low plasma membrane expression and mediated I-TAC-stimulated cellular responses. CXCR3Alt was rarely expressed on the cell surface and did not mediate any cell responses to the tested chemokines; however, CXCR3Alt negatively affected the plasma membrane expression of CXCR3A and CXCR3B and their chemokine-stimulated cellular responses. Jurkat cells express endogenous CXCR3, and exogenous CXCR3A expression enhanced chemotactic activity in response to I-TAC, IP-10, and MIG. By contrast, exogenous expression of CXCR3B and CXCR3Alt eliminated or reduced the CXCR3A-induced chemotactic activity. The PF-4 chemokine did not activate any CXCR3-mediated cellular responses. NanoBiT technology are useful to integrative studies of CXCR3-mediated cell signaling, and expand our knowledge of the cellular responses mediated by molecular interactions among the splicing variants, including cell surface expression, ligand-dependent receptor activation, and chemotaxis.


Assuntos
Quimiocina CXCL10 , Transdução de Sinais , Humanos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Ligantes , Processamento Alternativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
11.
J Invest Dermatol ; 143(7): 1138-1146.e12, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36708947

RESUMO

Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.


Assuntos
Dermatite , Esclerodermia Localizada , Humanos , Animais , Camundongos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Regulação para Cima , Ligantes , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Fibrose , Inflamação , Fibroblastos/metabolismo , Bleomicina/toxicidade , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
12.
Cancer Immunol Immunother ; 72(6): 1865-1880, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36688994

RESUMO

Radiotherapy (RT) not only damages tumors but also induces interferon (IFN) expression in tumors. IFNs mediate PD-L1 to exhaust CD8+ T cells, but which also directly impact tumor cells and potentially activate anti-tumor immune surveillance. Little is known about the contradictory mechanism of IFNs in regulating CD8+ T-mediated anti-tumor activity in lung cancer. This study found that RT induced IFNs and CXCL9/10 expression in the RT-treated lung cancer cells. Specifically, RT- and IFNγ-pretreated A549 significantly activated CD8+ T cells, resulting in significant inhibition of A549 colony formation. RNAseq and consequent qPCR results revealed that IFNγ induced PD-L1, CXCL10, and ICAM-1, whereas PD-L1 knockdown activated CD8+ T cells, but ICAM-1 knockdown diminished CD8+ T cell activation. We further demonstrated that CXCR3 and CXCL10 decreased in the CD8+ T cells and nonCD8+ PBMCs, respectively, in the patients with lung cancer that expressed lower reactivation as co-cultured with A549 cells. In addition, inhibitors targeting CXCR3 and LFA-1 in CD8+ T cells significantly diminished CD8+ T cell activation and splenocytes-mediated anti-LL/2shPdl1. In conclusion, we validated that RT suppressed lung cancer and overexpress PD-L1, CXCL10, and ICAM-1, which exhibited different roles in regulating CD8+ T cell activity. We propose that CXCR3highCD8+ T cells stimulated by CXCL10 exhibit anti-tumor immunity, possibly by enhancing T cells-tumor cells adhesion through CXCL10/CXCR3-activated LFA-1-ICAM-1 interaction, but CXCR3lowCD8+ T cells with low CXCL10 in patients with lung cancer were exhausted by PD-L1 dominantly. Therefore, RT potentially activates CD8+ T cells by inducing IFNs-mediated CXCL10 and ICAM-1 expression in tumors to enhance CD8+ T-tumor adhesion and recognition. This study clarified the possible mechanisms of RT and IFNs in regulating CD8+ T cell activation in lung cancer.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pulmonares , Humanos , Quimiocina CXCL10/metabolismo , Antígeno B7-H1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Interferon gama/metabolismo , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
13.
Int J Biochem Cell Biol ; 152: 106311, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36195287

RESUMO

Development of fibrosis leads to end stage diseases that defy treatments across all organs. This ensues as chronic inflammation is not dampened by physiologic processes that issue in the resolution phase of wound healing. Thus, these conditions can be considered diseases of "failure to heal". In the absence of broadly viable treatments, it is proposed to examine key switches in wound healing resolution to seek insights into novel approaches. Signaling through the GPCR CXCR3 has been shown to be one such critical player in this physiologic transition that limits and even reverses early fibrosis. As such, a number of investigators and early stage technology companies have posited that triggering this signaling network would limit fibrosis. While there are some conflicting results, a consensus is emerging that pharmacologic interventions that promote signaling through this pathway represent innovative ways to limit fibrotic diseases.


Assuntos
Fibrose , Receptores CXCR3 , Cicatrização , Humanos , Fibrose/genética , Receptores CXCR3/genética , Transdução de Sinais/fisiologia , Cicatrização/genética , Cicatrização/fisiologia
14.
Nat Commun ; 13(1): 5846, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195635

RESUMO

Some G protein-coupled receptor (GPCR) ligands act as "biased agonists" that preferentially activate specific signaling transducers over others. Although GPCRs are primarily found at the plasma membrane, GPCRs can traffic to and signal from many subcellular compartments. Here, we determine that differential subcellular signaling contributes to the biased signaling generated by three endogenous ligands of the GPCR CXC chemokine receptor 3 (CXCR3). The signaling profile of CXCR3 changes as it traffics from the plasma membrane to endosomes in a ligand-specific manner. Endosomal signaling is critical for biased activation of G proteins, ß-arrestins, and extracellular-signal-regulated kinase (ERK). In CD8 + T cells, the chemokines promote unique transcriptional responses predicted to regulate inflammatory pathways. In a mouse model of contact hypersensitivity, ß-arrestin-biased CXCR3-mediated inflammation is dependent on receptor internalization. Our work demonstrates that differential subcellular signaling is critical to the overall biased response observed at CXCR3, which has important implications for drugs targeting chemokine receptors and other GPCRs.


Assuntos
Proteínas de Ligação ao GTP , Receptores CXCR3 , Animais , Quimiocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Ligantes , Camundongos , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
15.
J Oral Pathol Med ; 51(9): 791-800, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998229

RESUMO

BACKGROUND: The chemokine network orchestrates the cancer stem-like property and consequently participates in cancer progression. CXCR3 contributes cancer progressive property and immunomodulation in the tumor microenvironment. The two major isoforms of CXCR3 are scrutinized and the divergence is showed that CXCR3A promotes cancer cell growth and motility while CXCR3B functions contrarily in many studies. However, rare studies illustrate the role of CXCR3 isoforms in cancer stem-like property and chemoresistance, especially in head and neck cancer (HNC). METHODS: Levels of CXCR3, CXCR3B, and Sox2 were determined in HNC tissue microarray by immunohistochemistry staining to explore potential clinical relevance. Lentivirus-mediated CXCR3-isoform overexpression with MTS assay, clonogenic assay, transwell migration, sphere formation, and chemo-drug susceptibility were implemented to investigate the role of CXCR3-isofoms in HNC. RESULTS: High levels of CXCR3 were significantly associated with advanced stage (p < 0.01), regional lymph node metastasis (p < 0.05), and poor differentiation (p < 0.005) and further correlated with worse survival rate in oral cancer patients (p = 0.036). Higher levels of CXCR3B were found in regional lymphatic invasion of HNC and progressive stage of squamous cell carcinoma. Elevated Sox2 expression was significantly associated with the advanced stage of HNC in the oral cavity, and demonstrated a co-expression pattern with CXCR3B. Furthermore, lentivirus-mediated overexpression of CXCR3A and CXCR3B in SAS human oral cancer cells promoted cell mobility. CXCR3A overexpression enhanced sphere-forming ability and chemoresistance of CSCs by upregulating stemness-related genes. CONCLUSION: This study first provides a novel insight of CXCR3 isoform A in HNC cancer progression via regulating cancer stem-like properties and chemoresistance, suggesting that CXCR3A may be a prognostic marker and novel target for HNC therapy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Humanos , Isoformas de Proteínas , Receptores CXCR3/genética , Microambiente Tumoral
16.
Prostate ; 82(13): 1223-1236, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35700340

RESUMO

BACKGROUND: Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS) is an inflammatory immune disease that is characterized by infiltrating inflammatory cells in the prostate and pelvic or by perineal pain. Receptor CXCR3modulates immune and inflammatory responses; however, the effects of CXCR3 antagonist AMG487 in the context of CP/CPPS are unknown. Therefore, we investigated the effect of AMG487 in experimental autoimmune prostatitis (EAP) mice and explored the potential functional mechanisms. METHODS: The EAP model was induced by intradermally injecting a mixture of prostate antigens and complete Freund's adjuvant on Days 0 and 28. To evaluate the effect of AMG487 on EAP mice, treatment with AMG487 and vehicle solution was conducted for the indicated period. Then, procedures were performed, including behavioral test, to evaluate the pain response to stimulation before the mice were killed and a histological assessment to evaluate the inflammation after the mice were killed. Immunofluorescence, flow cytometry, and Western blot assay were used to analyze the functional phenotype and regulation mechanism of AMG487 on T helper type 1 (Th1) cells and macrophages. RESULTS: We found high expression of CXCR3 in human benign prostate tissues with inflammation and EAP mice. The elevated CXCR3 in prostate tissues correlates with the severity of inflammation. CXCR3 antagonist AMG487 treatment ameliorated the inflammatory changes and the pelvic pain of EAP mice. AMG487 inhibits Th1 cell differentiation through the IL-12/STAT4pathway and inhibits pro-inflammatory M1 macrophages through the lipopolysaccharide/NF-κB p65signaling. AMG487 could inhibit the secretion of inflammatory mediators in EAP mice. CONCLUSION: CXCR3 antagonist AMG487 could ameliorate the inflammatory changes and the pelvic pain of EAP mice by diminishing Th1 cell differentiation and inhibiting macrophage M1 phenotypic activation. Thus, the results imply that AMG487 has the potential as an effective therapeutic agent in the prevention and treatment of EAP.


Assuntos
Doenças Autoimunes , Dor Crônica , Prostatite , Acetamidas , Animais , Diferenciação Celular , Modelos Animais de Doenças , Humanos , Inflamação , Macrófagos/patologia , Masculino , Camundongos , Dor Pélvica/tratamento farmacológico , Dor Pélvica/etiologia , Dor Pélvica/metabolismo , Fenótipo , Prostatite/patologia , Pirimidinonas , Receptores CXCR3/genética , Receptores CXCR3/uso terapêutico
17.
PLoS One ; 17(6): e0269960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35709177

RESUMO

PURPOSE: Peripheral T cell CXCR3 expression has been found uniquely lower in patients having neovascular age-related macular degeneration (nAMD) than in healthy individuals. The CXCR3-axis has been shown to have angiostatic and antifibrotic properties. We have recently investigated systemic markers in patients with myeloproliferative neoplasms (MPNs) because of their higher prevalence of AMD, and we have observed higher systemic chronic low-grade inflammation and immunosenescence signs in MPNs with drusen (MPNd) compared to those with normal retinas (MPNn). The MPNs evolve in a biological continuum from early cancer-stages (essential thrombocytosis, polycythemia vera) to the advanced myelofibrosis stage. Especially myelofibrosis is characterized by bone marrow angiogenesis and fibrosis, similarly to retinal observations in nAMD. We speculate if we can find lower CXCR3 expression in MPNs, particularly myelofibrosis and if differences are seen between MPNd and MPNn. We also wanted to compare expression in nAMD and intermediate (i)AMD. METHODS: Patients in this cross-sectional study were 29 nAMD, 28 iAMD, 35 MPNd, and 27 MPNn. We performed flowcytometry on blood to measure CXCR3 expression. RESULTS: CD8+CXCR3 expression in nAMD was 6,1%, significantly lower than in iAMD 16%, MPNd 11%, MPNn 12% (p-values<0.05). Similar results were seen for CD4+CXCR3 expression. We also found CXCR3 expression decreasing over the MPN-continuum. For instance, in myelofibrosis, intermediate monocytes expression was 6.2%, significantly lower than 18% in ET and 18% in PV (p-values<0.05). CONCLUSIONS: We find CXCR3 downregulation on T-cells and some monocyte subset in nAMD compared to iAMD, MPNd, and MPNn, in line with previous nAMD studies. We also find CXCR3 downregulation in most monocyte subsets over the MPN continuum. Systemic leukocyte CXCR3 expression could both be involved in changes seen in the retina and the bone marrow. Further understanding the CXCR3-axis in AMD and MPNs may elucidate underlying pathogenic mechanisms and reveal new targets for treatment.


Assuntos
Leucemia , Transtornos Mieloproliferativos , Policitemia Vera , Mielofibrose Primária , Trombocitemia Essencial , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Doença Crônica , Estudos Transversais , Humanos , Leucemia/complicações , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/diagnóstico , Transtornos Mieloproliferativos/genética , Policitemia Vera/diagnóstico , Receptores CXCR3/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicações
18.
Korean J Intern Med ; 37(5): 1031-1049, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35725307

RESUMO

BACKGROUND/AIMS: We previously proposed minicircle vector technology as the potential platform for the development and production of new biologics. In this study, we have designed a novel target molecule for the treatment of allograft rejection and evaluated its feasibility as the therapeutic agent in this disease using the minicircle vector system. METHODS: We engineered vectors to carry cassette sequences for anti-CD25, interleukin-10 (IL-10), and C-X-C motif chemokine receptor 3 (CXCR3) fusion protein, and then isolated minicircle vectors from the parent vectors. We verified the substantial production of anti-CD25/IL-10/CXCR3 fusion protein from minicircles and their duration in HEK293T cells and mice models. We also evaluated whether minicircle-derived anti-CD25/IL-10/CXCR3 has therapeutic effects in a skin allograft in mice model. RESULTS: We confirmed the production of anti-CD25/IL-10/CXCR3 from minicircle by its significant availability in cells transfected with the minicircle and in its conditioned media. After a single injection of minicircle by hydrodynamic injection via mouse tail vein, luminescence or red fluorescence was maintained until 40 days in the liver tissue, suggesting the production of anti-CD25/IL-10/CXCR3 protein from minicircles via protein synthesis machinery in the liver. Mice treated with the minicircle encoding anti-CD25/IL-10/CXCR3 showed prolonged skin allograft survival times accompanied by improved immunologic regulation e.g., reduction of the lymphocyte population of Th1, Th2, and Th17 and an induction of regulatory T cells. CONCLUSION: These findings implied that self-generated anti-CD25/IL-10/CXCR3 protein drug by minicircle technology is functionally active and relevant for reducing allograft rejection. The minicircle vector system may be useful for developing new biological drugs, avoiding manufacturing or practical problems.


Assuntos
Rejeição de Enxerto , Interleucina-10 , Aloenxertos , Animais , Rejeição de Enxerto/prevenção & controle , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Receptores CXCR3/genética , Linfócitos T Reguladores
19.
Front Immunol ; 13: 859070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619703

RESUMO

Follicular-helper T cells (TFH) are an essential arm of the adaptive immune system. Although TFH were first discovered through their ability to contribute to antibody affinity maturation through co-stimulatory interactions with B cells, new light has been shed on their ability to remain a complex and functionally plastic cell type. Due to a lack sample availability, however, many studies have been limited to characterizing TFH in mice or non-canonical tissue types, such as peripheral blood. Such constraints have resulted in a limited, and sometimes contradictory, understanding of this fundamental cell type. One subset of TFH receiving attention in chronic infection are CXCR3-expressing TFH cells (CXCR3+TFH) due to their abnormal accumulation in secondary lymphoid tissues. Their function and clonal relationship with other TFH subsets in lymphoid tissues during infection, however, remains largely unclear. We thus systematically investigated this and other subsets of TFH within untreated HIV-infected human lymph nodes using Mass CyTOF and a combination of RNA and TCR repertoire sequencing. We show an inflation of the CXCR3+TFH compartment during HIV infection that correlates with a lower HIV burden. Deeper analysis into this population revealed a functional shift of CXCR3+TFH away from germinal center TFH (GC-TFH), including the altered expression of several important transcription factors and cytokines. CXCR3+TFH also upregulated cell migration transcriptional programs and were clonally related to peripheral TFH populations. In combination, these data suggest that CXCR3+TFH have a greater tendency to enter circulation than their CXCR3- counterparts, potentially functioning through distinct modalities that may lead to enhanced defense.


Assuntos
Infecções por HIV , Células T Auxiliares Foliculares , Animais , Centro Germinativo , Humanos , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Linfócitos T Auxiliares-Indutores , Transcriptoma
20.
J Interferon Cytokine Res ; 42(4): 180-190, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438529

RESUMO

We explored the biological functions, signaling pathways, potential inflammation, and immune biomarkers involved in ulcerative cutaneous tuberculosis (UCT). Mycobacterium tuberculosis-infected tissues from UCT patients and patients with noncutaneous tuberculous ulcers (NCTUs) were studied using transcriptomic analysis. Functional enrichment determined using the Gene Ontology database and enrichment of signaling pathways was ascertained using the Kyoto Encyclopedia of Genes and Genomes database. Protein-protein interaction (PPI) networks were analyzed to determine the hub genes. A total of 4,396 differentially expressed genes (DEGs) were identified. DEGs were enriched in CXCR3 chemokine receptor binding, chemokine activity, and cytokine-cytokine receptor interaction and other aspects. Analyses of PPI networks identified 15 hub genes. Expression of chemokine (C-X-C motif) ligand 9 (CXCL9)/10/11 messenger RNA (mRNA) and C-X-C motif chemokine receptor 3 (CXCR3) mRNA in the lesions of patients with UCT increased compared with that in NCTU cases. Expression of CXCL9 mRNA and CXCL10 mRNA in plasma also increased, which was consistent with other test results. We discovered a novel plasma CXC chemokine signature that could be used to differentiate UCT from NCTU. Our study (1) provides a reference for UCT diagnosis and selection of diagnostic markers and (2) lays the foundation for further elucidation of UCT pathogenesis.


Assuntos
Biologia Computacional , Úlcera , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , RNA Mensageiro , Receptores CXCR3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...